毛片大全-91久久久久久久-麻豆影音-91视频免费播放-一本色道久久综合亚洲精品按摩-日本中文在线观看-国产三级影院-国产特级毛片aaaaaa-日韩一卡二卡三卡-夜夜嗨av禁果av粉嫩av懂色av-亚洲精品456-国产日韩成人-日韩性生交大片免费看-日韩欧美有码-老头糟蹋新婚少妇系列小说

鋰離子在SEI是固態膜就是固相遷移嗎?

鉅大鋰電  |  點擊量:0  |  2019年04月04日  

SEI(固態電解質膜)對電池人而言,是再熟悉不過的陌生人。說它熟悉,因為絕大多數有關電化學電池的文章都會提到它,很難繞過去它去解釋實驗現象;說它陌生,我們真沒有想象中的那么了解它,它的成分組成,形成過程和作用機理。今天著重談一點:我們常說SEI是固態膜,那么鋰離子在其中就是固相遷移嗎?這是我們平常比較少關注的一個關鍵點。


先講一下德國馬爾堡大學SebastianKranz等人的這項研究工作結論:


1、作者通過在平面玻碳電極上形成固態電解質界面(SEIs)模型,證明了不管有沒有電解質添加劑,鋰離子穿過SEI的機制均為孔隙液相擴散機制,與傳統“固態電解質型”離子擴散機制的觀點相反。也就是說,我們常說的固態電解質膜,鋰離子和分子在其中其實是液相遷移的!


2、作者設計實驗,依次得出了鋰離子和二茂鐵分子在SEI中擴散的有效系數,發現二茂鐵的系數高于鋰離子。令人驚訝的是,二茂鐵的有效擴散系數略高于鋰離子的有效擴散系數。


3、值得說明的是,真實電池中的SEI存在裂縫,而本文在玻碳電極上制備的SEI,由于沒有機械應力作用于SEI,因此,本文中SEI的裂紋比鋰離子電池中石墨顆粒的SEI中的裂紋要小得多。


一、SEI是什么?我們為什么要研究?


鋰離子電池(LIB)在首次充電過程中,電解液會在石墨負極處被還原分解,在石墨顆粒的頂部形成一層鈍化層。在理想情況下,該鈍化層的行為類似于固體電解質,這意味著該鈍化層對鋰離子具有很高的滲透性,但會阻塞陰離子、溶劑分子和電子,以防止進一步的電解質分解。因此,這一鈍化層被稱為“固態電解質界面”(SEI),一種內部薄、外部稍厚的雙層結構。然而,在實際的電池中,SEI并不能完全抑制電解液的進一步分解,由此產生的不可逆容量損失是LIBs循環壽命的一個主要問題,人們對此知之甚少,主要是對SEI的電荷傳輸和傳質特性基本知識不夠了解。


一般來說,更好地了解電荷運輸和SEI形態之間的相互關系,將有助于縮短SEI形成時間,從而降低電池生產成本。為了設計和改善SEI特性,研究人員提出了兩種不同的策略。第一種策略是通過選擇適當的循環條件和電解質添加劑(稱為“體內設計”)來影響電池循環期間的SEI特性。第二種策略是在負極上涂覆人工SEI(稱為“體外設計”)。對于SEI的“體內設計”來說,研究人員已經測試了大量電解質添加劑,例如碳酸乙烯酯、碳酸氟乙烯酯和二草酸硼酸鋰(LiBOB),其中LiBOB在1.7Vvs.Li/Li+時分解,形成一個薄而穩定的SEI。據報道,在純碳酸丙烯酯中添加1MLiBOB即可形成穩定的SEI,有效防止石墨負極剝落。此外,基于LiBOB的SEI具有很高的熱穩定性,因此對電池在高溫下的應用有很大幫助。


二、作者是怎么去研究SEI的?


雖然眾多研究人員在添加劑對SEI化學成分和電池性能的影響方面,已經做了大量的工作,但是SEI傳輸特性的基本知識,到目前為止仍然非常有限。在作者最近的一項研究中,他們在沒有任何添加劑的情況下將碳酸鹽基電解質分解,并在平面玻碳電極上形成SEIs模型(J.Electrochem.Soc.164(2017)3777–3784.)。在文章中,作者通過研究離子和氧化還原探針分子(二茂鐵Fc/Fc+)在SEI中的擴散,證明了(Fc/Fc+)在SEI中具有相同的有效擴散系數,這有力地表明,SEIs中含有孔隙,離子和分子都在這些孔隙內的液相中傳輸,這與傳統鋰離子“固態電解質型”離子擴散機制的觀點相反。


此外,作者還研究了當SEI的形成受到電解質添加劑的影響時,離子和分子在SEI的孔輸運是否仍然是主要的輸運機制。為此,作者在設計實驗的時候,在標準電池電解液中溶解了不同量的LiBOB,并在平面玻碳電極上形成SEIs。作者不僅通過聚焦離子束掃描電子顯微鏡(FIB-SEM)和原子力顯微鏡(AFM)對SEIs的厚度和形貌進行了研究,而且還利用阻抗譜來探測SEI的離子輸運阻抗,以及通過二茂鐵氧化還原分子實驗來探測分子在SEI中的輸運。通過實驗結果對比,作者計算了SEIs中離子和分子的有效擴散系數。


三、SEI的具體研究過程


3.1.如何制備可靠有說服力的有效SEI?


為了形成有效的SEIs,作者將電池進行三次循環伏安掃描,掃描區間為0.01V到3V,掃描速率為v=0.5mV/s,其結果如上圖所示。在第一個循環中,1.7V–1.5V范圍內較強的還原峰是由LiBOB分解引起的(圖a)。隨著LiBOB濃度的降低,還原峰的峰高和峰電位液隨之降低,并且還原峰變得越來越寬。約0.6V處,碳酸鹽發生還原,這表明LiBOB分解產物并不能完全阻止電解質的進一步分解。與不含LiBOB添加劑的電解質(綠色虛線)相比,碳酸鹽分解將導致更少的電荷流動,并在較低的還原電位下發生。從第二和第三個循環(圖b)和圖c)中,可以觀察到更明顯的SEI鈍化效果,由于碳酸鹽的分解,使LiBOB的分解峰幾乎檢測不到,并且電流密度液降低了一個數量級以上。因此,在含鋰電解質添加劑中形成的SEI,在碳酸鹽分解方面表現出更強的鈍化作用。


在沒有LiBOB添加劑的情況下,負極上形成的SEI的FIB-SEM橫截面圖像??梢钥吹降湫偷碾p層結構,致密內層厚度約60nm,外層厚度在200-400nm左右。但是,當在電解液中添加5mMLiBOB后,會使SEI的厚度和結構發生顯著變化,如圖b所示,在FIB-SEM橫截面圖像中,SEI為厚度在100nm–140nm范圍內的單層結構。在測試的同時,作者還測量了尖端偏壓(1V)與氣相色譜電極之間的電流。尖端位于SEI的頂部,無法檢測到電子電流,顯示了SEI的電子絕緣性質,只有當SEI被完全移除,且尖端與GC表面接觸時,才能檢測到電流。通過比較GC表面的平均高度和SEI造成粗糙表面的平均高度,進一步確定出SEI的厚度為80nm,該SEI強度很高,需要高達1.7μN的力來完全去除它。


3.2.SEI中離子和分子的傳輸研究過程


在離子和分子的傳輸研究中,作者將已形成SEI的電解質換為10mMFc,然后在3V下采集阻抗譜,并在2.8V-3.5V范圍內收集CVs。在上圖a中,作者將阻抗譜根據等效電路進行擬合,其中位于高頻區的半圓便是由SEI形成的,該半圓在未形成SEI的裸GC電極的阻抗譜中并不存在。將SEI形成的半圓擬合成一個平行的RSEI|CSEI元件,RSEI為SEI產生的電阻,CSEI為SEI產生的電容。在低頻區,可以檢測到由雙電層電容形成的尖峰,在3V時,Fc/Fc+氧化還原電偶的電荷轉移電阻非常高,因此低頻阻抗占主導地位。從圖a中可以看出,不含LiBOB的電解質中形成的SEI電阻最低,在含有0.5mM和5mMLiBOB的電解質中,SEI電阻最高。圖b和c顯示出SEI電阻和電容的隨時間演變,即隨著時間的增加,SEI電阻減小,達到最小值,然后開始緩慢增加。隨著LiBOB濃度的增加,SEI電阻的最小值增大。與SEI電阻相比,SEI的電容對時間和LiBOB濃度的依賴性較弱。


假設SEI內部為均勻的介電材料,則SEI的厚度dSEI可以通過下列公式估算:


其中ε0為真空介電常數,εr為SEI的相對介電常數,A為電極面積。


在上表中,作者將采用相對介電常數估算出的SEI厚度與AFM表征、以及FIB-SEM表征出的SEI厚度進行比較??梢钥闯觯挥胁惶砑覮iBOB中的電解質才會形成雙層SEI,且當相對介電常數為10時,估算厚度與真實內層厚度非常接近。在含LiBOB添加劑的電解質中,形成SEI厚度,估算值小于觀察值。出現這種現象的解釋有兩個:(i)SEI的相對介電常數大于10;(ii)只有部分SEI限制離子傳輸,很遺憾,目前作者也不知道哪種解釋是正確的。


在阻抗譜測試后,作者又將電池在2.8V-3.6V范圍進行循環伏安掃描,目的是利用二茂鐵/二茂鐵離子氧化還原偶(半波電位E1/2=3.24V)作為穿過SEI的分子輸運探針。在圖a中,顯示了不同LiBOB濃度下電解質獲得的循環伏安圖,陽極電流在半波電位(3.24VvsLi/Li+)上方急劇增加,因此可以排除由于穿過鈍化層的電子傳輸緩慢而產生的大動能過電位。圖b中的CVs測試電池中不含Fc,但含有LiBOB作為比較??梢钥闯觯姵匦纬傻腟EI在3.5V下具有良好的電化學穩定性,而3.45V下的電容電流顯示值為2*10-7A/cm2,對應于20μF/cm2的雙層電容。


可以看出,在陽極區,模擬電流為零,而在陰極區,實驗中檢測到的陰極電流也很小,而SEI中有限的長擴散過程是模擬中沒有觀察到陰極電流的原因。在氧化過程中,Fc和Fc+的濃度梯度在SEI中形成,在通過SEI擴散后,Fc+的濃度仍然接近于0,這是由于Fc+的體積濃度很低,陰極掃描過程中幾乎無法檢測到電流。因此,有限長擴散過程導致陽極/陰極電流,與還原/氧化物質的體積濃度成比例關系作者展示了SEI可逆阻抗RSEI-1和擴散限制二茂鐵負極電流janod(3.45V)在循環伏安SEI形成后40h內變化過程。如前所述,只有當擴散限制電流值超過10-6A/cm2時,SEI才最穩定。并且,RSEI-1和janod在不同電解質中的變化也大不相同,有效擴散系數也是如此。


3.3.最終結論


作者繪制了鋰離子和二茂鐵分子在SEI中的有效擴散系數最大值與電解質中LiBOB濃度的關系。可以看出,兩種擴散系數都表現出非常相似的數值,并隨LiBOB濃度的增加而減小。在此,作者跑出了最終結論,在所有SEI中,鋰離子和分子的傳輸路徑是相同的,即在SEI孔隙內的液相中發生輸運。這表明,添加LiBOB會降低SEI的孔隙率,從而減慢鋰離子和分子的傳輸。


四、小結


在本文中,作者通過合理的設計實驗,研究了在碳酸鹽基電解質中添加LiBOB對SEI結構和SEI輸運性的影響。不含LiBOB添加劑電解質中形成的SEI呈現雙層結構,但在加入LiBOB添加劑后,電解質中形成的SEI則看不到內層和外層之間的明顯區別。含LiBOB添加劑的電解質中形成的SEI的總厚度在70-200nm范圍內,并且會減緩鋰離子和分子的運輸。盡管如此,鋰離子的有效擴散系數和二茂鐵氧化還原分子的有效擴散系數非常相似,并且在SEI形成后呈現相同的時間變化。這有力地表明,鋰離子和二茂鐵分子都是在SEI孔隙內的液相中運輸的,這一結果與固體電解質型輸運機制的普遍觀點形成了鮮明對比。


相關產品

主站蜘蛛池模板: 中文字幕 欧美激情 | 日日干,夜夜操 | 日韩一区欧美二区 | 最新日韩av | 夜夜添无码一区二区三区 | 人人草人人草 | 天天看天天爽 | 日批免费看 | 91精品国产综合久久福利 | 欧美色图13p | 国产亚洲久久 | 波多野结衣视频在线播放 | 久久国产网站 | 中文字幕精品久久久久人妻红杏1 | 国产亚洲精品女人久久久久久 | 国产高潮视频在线观看 | 全部免费毛片在线播放一个 | 少妇色| 中文字幕在线网 | 99r精品视频| 欧美与黑人午夜性猛交久久久 | 一个人在线观看免费视频www | 桃色综合网 | 亚洲在线影院 | 欧美插插视频 | 黄页视频在线观看 | 国产一级黄色电影 | 成人黄色小说在线观看 | 国产伦精品一区二区三区免费迷 | 色婷婷yy| 瑟瑟视频网站 | 青青草华人在线 | 欧美一级特黄视频 | 国产精品久久久久久久久久东京 | 在线免费看黄色片 | 欧美做爰xxxⅹ性欧美大片 | 99久久人妻无码精品系列 | 亚洲综合小说网 | a级片免费观看 | 人妻少妇精品一区二区三区 | 午夜爽视频 | 国产成人精品亚洲男人的天堂 | 免费大片av | 熟女视频一区 | 国产一区二区视频在线 | 久久日本视频 | 绝顶高潮合集videos | 91免费看视频 | 国产精品19乱码一区二区三区 | 在线免费看黄网站 | 精品视频一区二区 | 亚洲网在线 | 天天想你在线观看完整版高清 | 久久伊人色 | 亚洲天堂自拍偷拍 | 性欧美69 | 国产特黄大片aaaa毛片 | 张柏芝亚洲一区二区三区 | 亚洲国产视频一区二区 | 亚洲成熟少妇 | 国产一区二区三区在线视频 | 国产精品乱| 美女被啪羞羞粉色视频 | 欧美成人黄色网 | 中文字幕影片免费在线观看 | 韩日成人 | 成人手机视频 | 国外成人在线视频 | 男人天堂色| 亚洲图片另类小说 | 一级裸体片 | 日本激情在线 | 久久99在线| 污片在线观看 | 99久久久无码国产精品性黑人 | 亚洲色图欧美 | 亚洲国产91 | 超碰黑人| 147人体做爰大胆图片成人 | 国产成人av免费看 | 第一福利av | 免费一二三区 | 欧美性大战久久久久久久 | 亚洲天堂成人在线观看 | 国产精品美女视频 | 免费视频91 | 女性裸体无遮挡胸 | 久久久久久草 | 涩涩涩在线观看 | 中文字幕在线免费看线人 | 国产一二三视频 | 欧美黑人一级爽快片淫片高清 | 亚洲午夜视频在线观看 | 免费的性爱视频 | 男生操女生免费网站 | 国产大片中文字幕在线观看 | 波多野结衣导航 | 精品美女一区二区 | 少妇被狂c下部羞羞漫画 |