鉅大鋰電 | 點擊量:0次 | 2019年06月21日
鈉離子電池的性能特點分析
鈉與鋰屬于同一主族,許多理化性質比較相似,也決定了鈉離子電池研發的可能性。與鋰離子電池相比,鈉離子電池具有2大優勢:一是原料成本低,不使用鋰、鈷等高價稀有金屬,鈉最大的優點是在海水等資源中含量豐富,是“取之不盡”的元素;二是可以沿用現有的生產工序,鈉離子電池的工作機制與鋰電池相同,電池企業的現有生產設備可以直接用來生產鈉離子電池,因為基本不需要設備投資,所以各家企業很容易將其作為替代電池開展生產。鈉離子電池發展到目前所面臨的最大問題是能量密度和功率密度偏低,這也是限制其未來實現商業化應用的最大問題。
鈉離子電池正極材料的結構和性能
對于鈉離子電池而言,在正極材料方面的研究可謂是百家爭鳴。正極材料不僅是提高鈉離子電池性能的戰場,也是限制鈉離子電池成本的一大瓶頸。目前關于鈉離子電池層狀正極材料的研究報道已經很多,但大都含過渡金屬鎳(Ni)或Co元素,而Ni和Co是鋰離子電池正極材料中廣泛使用的元素,用到鈉離子電池中其成本下降空間有限,所以Ni和Co不是鈉離子電池正極材料的首選元素;而且這些材料在空氣中不穩定,易吸水或與水-氧氣(二氧化碳)發生化學反應,這無疑會增加材料的生產、運輸及儲存成本,而且會對電池性能帶來影響。因此,要實現鈉離子電池的實際應用,就必須發展能夠替代Ni或Co的活性元素及其穩定的新型電極材料。
1.橄欖石型NaFePO4
鑒于磷酸鐵鋰LiFePO4在鋰離子電池中的大規模應用,磷酸鐵鈉NaFePO4自然是被優先考慮的鈉離子電池正極材料。橄欖石結構的NaFePO4在所有磷酸鹽類鈉離子電池正極材料中理論比容量最大,為154mAh/g,如表1所示。在NaFePO4中,Na+占據4(c)的Wychoff位置,Fe2+占據4(a)位置,與橄欖石型LiFePO4類似,其晶體結構如圖1所示。Oh等[1]研究發現Na/NaFePO4半電池的工作電壓為2.7V,在0.05C充放電倍率和0.5C充放電倍率下,比容量分別穩定在125mAh/g和85mAh/g,循環50圈后,XRD結果表明其橄欖石結構仍然良好,說明該材料在嵌鈉脫鈉過程中具有優異的穩定性。
相對于其他鈉離子電池正極材料,NaFePO4雖然具有較高的理論容量,但是到目前為止該材料的研究并不充分,主要受限于其合成方法較為困難。常見的固相或液相方法合成出來的NaFePO4都是化學惰性的磷鈉鐵礦結構,并非是具有活性的橄欖石結構。因此,未來對于NaFePO4的研究必須從合成方法上進行突破,才能使其有望在鈉離子儲能電池上大規模的應
NASICON結構是一種鈉離子超導體結構,該結構具有較大的三維通道結構,能夠供鈉離子進行快速的脫嵌。NASICON型的磷酸鹽類材料具有較高的工作電壓,較好的結構熱穩定性,通過碳包覆和摻雜的方式能夠提高其容量和倍率性能,被認為是鈉離子當前發展階段最具產業化應用前景的正極材料。目前以Na3V2(PO4)3作為代表材料,該材料屬于六角晶系,空間群為R-3c。圖3為Na3V2(PO4)3的晶體結構圖[2],其晶體結構是由每個VO6八面體通過共用O原子與3個PO4四面體相連組成,其中Na+有2個占據位點:Na1和Na2。其中,Na1位置有1個Na+,而Na2位置有2個Na+,并且在充放電過程中Na2位置的2個Na+首先進行脫嵌。
目前常見合成Na3V2(PO4)3的方法包括固相法、溶膠-凝膠法、水熱法、碳熱還原法等。其中最常見的為高溫固相法,此方法雖然操作簡單,但是溫度控制較為麻煩。另外,該方法制備周期較長,無法控制材料顆粒尺寸,制備出的材料結塊現象較為明顯,對材料的性能影響較大。
溶膠-凝膠法可以實現原材料分子級水平的混合。溶液是由直徑1~100nm的膠體粒子分散在溶液中形成的,形成凝膠后在前驅體溶液中具有獨特的網狀結構,使得制備的產物粒度分布均勻,粒徑小且分布均勻。但該方法制備周期較長,操作復雜,影響因素較多,因此難以實現工業化應用。
Shen等通過溶膠-凝膠法實現氮摻雜碳包覆和復合碳納米管等方式來提高Na3V2(PO4)3的導電性,改性后的復合材料其導電性有了較為顯著的提高。通過對其電性能測試發現,如圖4所示,該材料有與LiFePO4較為相似的充放電曲線,其電壓平臺為3.4V,在0.2C和70C放電時,比容量能夠分別達到94mAh/g和70mAh/g,在30C循環300周后容量保持率還能達到86%。
在鈉離子電池正極中,Na3V2(PO4)3雖然研究相對較為成熟,且具有優異的結構穩定性,但是其理論比容量偏低,僅有118mAh/g,將來只能應用于體積較大的電池領域;同時,釩離子具有一定的毒性,對于將來的工業化生產具有一定的限制。
結語
鈉離子電池與鋰離子電池具有相似的工作原理,但鋰離子電池的發展相對較為成熟。目前,借鑒鋰離子電池正極的相關經驗來制備相應的鈉離子電池正極材料成為一種主要研究方法,并在一定程度上展現了較好的電池性能。但是,鈉離子電池在發展的過程中也存在幾個關鍵問題亟待解決:第一,鈉離子電池是一種有別于鋰離子電池的電池體系,借鑒鋰離子電池正極材料來開發鈉離子電池正極材料是一種捷徑,目前已知的鈉離子電池正極材料或多或少都會存在一定的問題,尋找新的具有高能量密度和功率密度的鈉離子電池正極材料,才是提高鈉離子電池性能的重要途徑,也是使鈉離子電池早日應用到大規模儲能的關鍵。第二,通過摻雜金屬離子和導電劑,控制顆粒粒徑以及開發更簡單高效的合成方法,也會對正極材料的電化學性能產生非常顯著的改觀。第三,開發具有與正極材料相匹配的負極材料、電解液和隔膜,也是鈉離子電池實現產業化之前亟待解決的問題。
鈉離子電池的正極和負極可使用的材料種類繁多,未雨綢繆的進行鈉離子電池的開發勢在必行。想必在不遠的將來,高能量密度、高功率密度、高導電性和循環性的電極材料會不斷的涌現。
上一篇:特斯拉電池研究團隊申請新專利
下一篇:鋁空氣電池能用鋰電池代替嗎










